Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(8): eadl2238, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394209

RESUMO

Skeletal stem cells (SSCs) that are capable of self-renewal and multipotent differentiation contribute to bone development and homeostasis. Several populations of SSCs at different skeletal sites have been reported. Here, we identify a metaphyseal SSC (mpSSC) population whose transcriptional landscape is distinct from other bone mesenchymal stromal cells (BMSCs). These mpSSCs are marked by Sstr2 or Pdgfrb+Kitl-, located just underneath the growth plate, and exclusively derived from hypertrophic chondrocytes (HCs). These HC-derived mpSSCs have properties of self-renewal and multipotency in vitro and in vivo, producing most HC offspring postnatally. HC-specific deletion of Hgs, a component of the endosomal sorting complex required for transport, impairs the HC-to-mpSSC conversion and compromises trabecular bone formation. Thus, mpSSC is the major source of BMSCs and osteoblasts in bone marrow, supporting the postnatal trabecular bone formation.


Assuntos
Osso Esponjoso , Células-Tronco Mesenquimais , Células-Tronco , Osso e Ossos , Diferenciação Celular , Osteoblastos , Osteogênese/genética
2.
Cell Prolif ; 57(3): e13558, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37807299

RESUMO

Human organoids recapitulate the cell type diversity and function of their primary organs holding tremendous potentials for basic and translational research. Advances in single-cell RNA sequencing (scRNA-seq) technology and genome-wide association study (GWAS) have accelerated the biological and therapeutic interpretation of trait-relevant cell types or states. Here, we constructed a computational framework to integrate atlas-level organoid scRNA-seq data, GWAS summary statistics, expression quantitative trait loci, and gene-drug interaction data for distinguishing critical cell populations and drug targets relevant to coronavirus disease 2019 (COVID-19) severity. We found that 39 cell types across eight kinds of organoids were significantly associated with COVID-19 outcomes. Notably, subset of lung mesenchymal stem cells increased proximity with fibroblasts predisposed to repair COVID-19-damaged lung tissue. Brain endothelial cell subset exhibited significant associations with severe COVID-19, and this cell subset showed a notable increase in cell-to-cell interactions with other brain cell types, including microglia. We repurposed 33 druggable genes, including IFNAR2, TYK2, and VIPR2, and their interacting drugs for COVID-19 in a cell-type-specific manner. Overall, our results showcase that host genetic determinants have cellular-specific contribution to COVID-19 severity, and identification of cell type-specific drug targets may facilitate to develop effective therapeutics for treating severe COVID-19 and its complications.


Assuntos
COVID-19 , Estudo de Associação Genômica Ampla , Humanos , COVID-19/genética , Organoides , Perfilação da Expressão Gênica , Genética Humana
3.
Comput Biol Med ; 169: 107881, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159401

RESUMO

Fundus tessellation (FT) is a prevalent clinical feature associated with myopia and has implications in the development of myopic maculopathy, which causes irreversible visual impairment. Accurate classification of FT in color fundus photo can help predict the disease progression and prognosis. However, the lack of precise detection and classification tools has created an unmet medical need, underscoring the importance of exploring the clinical utility of FT. Thus, to address this gap, we introduce an automatic FT grading system (called DeepGraFT) using classification-and-segmentation co-decision models by deep learning. ConvNeXt, utilizing transfer learning from pretrained ImageNet weights, was employed for the classification algorithm, aligning with a region of interest based on the ETDRS grading system to boost performance. A segmentation model was developed to detect FT exits, complementing the classification for improved grading accuracy. The training set of DeepGraFT was from our in-house cohort (MAGIC), and the validation sets consisted of the rest part of in-house cohort and an independent public cohort (UK Biobank). DeepGraFT demonstrated a high performance in the training stage and achieved an impressive accuracy in validation phase (in-house cohort: 86.85 %; public cohort: 81.50 %). Furthermore, our findings demonstrated that DeepGraFT surpasses machine learning-based classification models in FT classification, achieving a 5.57 % increase in accuracy. Ablation analysis revealed that the introduced modules significantly enhanced classification effectiveness and elevated accuracy from 79.85 % to 86.85 %. Further analysis using the results provided by DeepGraFT unveiled a significant negative association between FT and spherical equivalent (SE) in the UK Biobank cohort. In conclusion, DeepGraFT accentuates potential benefits of the deep learning model in automating the grading of FT and allows for potential utility as a clinical-decision support tool for predicting progression of pathological myopia.


Assuntos
Aprendizado Profundo , Humanos , Semântica , Fundo de Olho , Aprendizado de Máquina , Algoritmos
4.
JAMA Netw Open ; 6(12): e2345821, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039006

RESUMO

Importance: High myopia (HM) is one of the leading causes of visual impairment worldwide. Genetic factors are known to play an important role in the development of HM. Objective: To identify risk variants in a large HM cohort and to examine the implications of genetic testing of schoolchildren with HM. Design, Setting, and Participants: This cohort study retrospectively reviewed whole-exome sequencing (WES) results in 6215 schoolchildren with HM who underwent genetic testing between September 2019 and July 2020 in Wenzhou City, China. HM is defined as a spherical equivalent refraction (SER) of -6.00 diopters (D) or less. The study setting was a genetic testing laboratory and a multicenter school census. Data were analyzed from July 2021 to June 2022. Main Outcomes and Measures: The frequency and distribution of positive germline variants, the percentage of individuals with HM in both eyes, and subsequent variant yield for common high myopia (CHM; -8.00 D ≤ SER ≤ -6.00 D), ultra myopia (UM; -10.00 D ≤ SER < -8.00 D), and extreme myopia (EM; SER < -10.00 D). Results: Of the 6215 schoolchildren with HM, 3278 (52.74%) were male. Their mean (SD) age was 14.87 (2.02) years, including 355 students in primary school, 1970 in junior high school, and 3890 in senior high school. The mean (SD) SER was -7.51 (-1.36) D for the right eye and -7.46 (-1.34) D for the left eye. Among schoolchildren with HM, genetic testing yielded 271 potential pathogenic variants in 75 HM candidate genes in 964 diagnoses (15.52%). A total of 36 known variants were found in 490 HM participants (7.88%) and 235 protein-truncating variants (PTVs) in 506 participants (8.14%). Involved variant yield was significantly positively associated with SER (Cochran-Armitage test for trend Z = 2.5492; P = .01), which ranged from 7.66% in the CHM group, 8.70% in the UM group, to 11.90% in the EM group. We also found that primary school students with EM had the highest variant yield of PTVs (8 of 35 students [22.86%]), which was 1.77 and 4.78 times that of the UM and CHM, respectively. Conclusions and Relevance: In this cohort study of WES for HM, several potential pathogenic variants were identified in a substantial number of schoolchildren with HM. The high variation frequency in younger students with EM can provide clues for genetic screening and clinical examinations of HM to promote long-term follow-up assessment.


Assuntos
Miopia , Humanos , Masculino , Criança , Adolescente , Feminino , Estudos de Coortes , Estudos Retrospectivos , Sequenciamento do Exoma , Miopia/genética , Refração Ocular
5.
Mol Genet Genomics ; 298(5): 1059-1071, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37277661

RESUMO

High myopia (HM), which is characterized by oxidative stress, is one of the leading causes of visual impairment and blindness across the world. Family and population genetic studies have uncovered nuclear-genome variants in proteins functioned in the mitochondria. However, whether mitochondrial DNA mutations are involved in HM remains unexplored. Here, we performed the first large-scale whole-mitochondrial genome study in 9613 HM cases and 9606 control subjects of Han Chinese ancestry for identifying HM-associated mitochondrial variants. The single-variant association analysis identified nine novel genetic variants associated with HM reaching the entire mitochondrial wide significance level, including rs370378529 in ND2 with an odds ratio (OR) of 5.25. Interestingly, eight out of nine variants were predominantly located in related sub-haplogroups, i.e. m.5261G > A in B4b1c, m.12280A > G in G2a4, m.7912G > A in D4a3b, m.94G > A in D4e1, m.14857 T > C in D4e3, m.14280A > G in D5a2, m.16272A > G in G2a4, m.8718A > G in M71 and F1a3, indicating that the sub-haplogroup background can increase the susceptible risk for high myopia. The polygenic risk score analysis of the target and validation cohorts indicated a high accuracy for predicting HM with mtDNA variants (AUC = 0.641). Cumulatively, our findings highlight the critical roles of mitochondrial variants in untangling the genetic etiology of HM.


Assuntos
População do Leste Asiático , Miopia , Humanos , DNA Mitocondrial/genética , Haplótipos/genética , Mitocôndrias/genética , Mutação , Miopia/genética
6.
Cell Rep ; 42(5): 112510, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37171956

RESUMO

High myopia (HM) is one of the leading causes of visual impairment and blindness worldwide. Here, we report a whole-exome sequencing (WES) study in 9,613 HM cases and 9,606 controls of Han Chinese ancestry to pinpoint HM-associated risk variants. Single-variant association analysis identified three newly identified -genetic loci associated with HM, including an East Asian ancestry-specific low-frequency variant (rs533280354) in FKBP5. Multi-ancestry meta-analysis with WES data of 2,696 HM cases and 7,186 controls of European ancestry from the UK Biobank discerned a newly identified European ancestry-specific rare variant in FOLH1. Functional experiments revealed a mechanism whereby a single G-to-A transition at rs533280354 disrupted the binding of transcription activator KLF15 to the promoter of FKBP5, resulting in decreased transcription of FKBP5. Furthermore, burden tests showed a significant excess of rare protein-truncating variants among HM cases involved in retinal blood vessel morphogenesis and neurotransmitter transport.


Assuntos
Predisposição Genética para Doença , Miopia , Proteínas de Ligação a Tacrolimo , Humanos , População do Leste Asiático , Exoma/genética , Miopia/genética , Fatores de Transcrição/genética , Proteínas de Ligação a Tacrolimo/genética
7.
EBioMedicine ; 82: 104161, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35841873

RESUMO

BACKGROUND: Ocular diseases may exhibit common clinical symptoms and epidemiological comorbidity. However, the extent of pleiotropic mechanisms across ocular diseases remains unclear. We aim to examine shared genetic etiology in age-related macular degeneration (AMD), diabetic retinopathy (DR), glaucoma, retinal detachment (RD), and myopia. METHODS: We analyzed genome-wide association analyses for the five ocular diseases in 43,877 cases and 44,373 controls of European ancestry from UK Biobank, estimated their genetic relationships (LDSC, GNOVA, and Genomic SEM), and identified pleiotropic loci (ASSET and METASOFT). FINDINGS: The genetic correlation of common SNPs revealed a meaningful genetic structure within these diseases, identifying genetic correlations between AMD, DR, and glaucoma. Cross-trait meta-analysis identified 23 pleiotropic loci associated with at least two ocular diseases and 14 loci unique to individual disorders (non-pleiotropic). We found that the genes associated with these shared genetic loci are involved in neuron differentiation (P = 8.80 × 10-6) and eye development systems (P = 3.86 × 10-5), and single cell RNA sequencing data reveals their heightened gene expression from multipotent progenitors to other differentiated retinal cells during retina developmental process. INTERPRETATION: These results highlighted the potential common genetic architectures among these ocular diseases and can deepen the understanding of the molecular mechanisms underlying the related diseases. FUNDING: The National Natural Science Foundation of China (61871294), Zhejiang Provincial Natural Science Foundation of China (LR19C060001), and the Scientific Research Foundation for Talents of Wenzhou Medical University (QTJ18023).


Assuntos
Retinopatia Diabética , Glaucoma , Degeneração Macular , Bancos de Espécimes Biológicos , Retinopatia Diabética/epidemiologia , Retinopatia Diabética/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Glaucoma/epidemiologia , Glaucoma/genética , Humanos , Degeneração Macular/epidemiologia , Degeneração Macular/genética , Miopia , Polimorfismo de Nucleotídeo Único , Descolamento Retiniano , Reino Unido/epidemiologia
8.
J Genet Genomics ; 48(3): 225-236, 2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-34011484

RESUMO

Figs and fig pollinators are one of the few classic textbook examples of obligate pollination mutualism. The specific dependence of fig pollinators on the relatively safe living environment with sufficient food sources in the enclosed fig syconia implies that they are vulnerable to habitat changes. However, there is still no extensive genomic evidence to reveal the evolutionary footprint of this long-term mutually beneficial symbiosis in fig pollinators. In fig syconia, there are also non-pollinator species. The non-pollinator species differ in their evolutionary and life histories from pollinators. We conducted comparative analyses on 11 newly sequenced fig wasp genomes and one previously published genome. The pollinators colonized the figs approximately 66.9 million years ago, consistent with the origin of host figs. Compared with non-pollinators, many more genes in pollinators were subject to relaxed selection. Seven genes were absent in pollinators in response to environmental stress and immune activation. Pollinators had more streamlined gene repertoires in the innate immune system, chemosensory toolbox, and detoxification system. Our results provide genomic evidence for the differentiation between pollinators and nonpollinators. The data suggest that owing to the long-term adaptation to the fig, some genes related to functions no longer required are absent in pollinators.


Assuntos
Ficus , Animais , Polinização , Vespas
9.
Nat Genet ; 52(1): 118-125, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873299

RESUMO

We conducted a large-scale genome-wide association study evaluation of 683 common bean accessions, including landraces and breeding lines, grown over 3 years and in four environments across China, ranging in latitude from 18.23° to 45.75° N, with different planting dates and abiotic or biotic stresses. A total of 505 loci were associated with yield components, of which seed size, flowering time and harvest maturity traits were stable across years and environments. Some loci aligned with candidate genes controlling these traits. Yield components were observed to have strong associations with a gene-rich region on the long arm of chromosome 1. Manipulation of seed size, through selection of seed length versus seed width and height, was deemed possible, providing a genome-based means to select for important yield components. This study shows that evaluation of large germplasm collections across north-south geographic clines is useful in the detection of marker associations that determine grain yield in pulses.


Assuntos
Genética Populacional , Genoma de Planta , Phaseolus/crescimento & desenvolvimento , Phaseolus/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Mapeamento Cromossômico , Cromossomos de Plantas , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Análise de Sequência de DNA
10.
Plant Cell Physiol ; 60(12): 2707-2719, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31410481

RESUMO

Boea hygrometrica can survive extreme drought conditions and has been used as a model to study desiccation tolerance. A genome-wide transcriptome analysis of B. hygrometrica showed that the plant can survive rapid air-drying after experiencing a slow soil-drying acclimation phase. In addition, a weighted gene co-expression network analysis was used to study the transcriptomic datasets. A network comprising 22 modules was constructed, and seven modules were found to be significantly related to desiccation response using an enrichment analysis. Protein ubiquitination was observed to be a common process linked to hub genes in all the seven modules. Ubiquitin-modified proteins with diversified functions were identified using immunoprecipitation coupled with mass spectrometry. The lowest level of ubiquitination was noted at the full soil drying priming stage, which coincided the accumulation of dehydration-responsive gene BhLEA2. The highly conserved RY motif (CATGCA) was identified from the promoters of ubiquitin-related genes that were downregulated in the desiccated samples. An in silico gene expression analysis showed that the negative regulation of ubiquitin-related genes is potentially mediated via a B3 domain-containing transcription repressor VAL1. This study suggests that priming may involve the transcriptional regulation of several major processes, and the transcriptional regulation of genes in protein ubiquitination may play a hub role to deliver acclimation signals to posttranslational level in the acquisition of desiccation tolerance in B. hygrometrica.


Assuntos
Magnoliopsida/metabolismo , Magnoliopsida/fisiologia , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Magnoliopsida/genética , Proteínas de Plantas/genética , Ubiquitinação/genética , Ubiquitinação/fisiologia
11.
Sci China Life Sci ; 61(8): 871-884, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30062469

RESUMO

Soybean was domesticated in China and has become one of the most important oilseed crops. Due to bottlenecks in their introduction and dissemination, soybeans from different geographic areas exhibit extensive genetic diversity. Asia is the largest soybean market; therefore, a high-quality soybean reference genome from this area is critical for soybean research and breeding. Here, we report the de novo assembly and sequence analysis of a Chinese soybean genome for "Zhonghuang 13" by a combination of SMRT, Hi-C and optical mapping data. The assembled genome size is 1.025 Gb with a contig N50 of 3.46 Mb and a scaffold N50 of 51.87 Mb. Comparisons between this genome and the previously reported reference genome (cv. Williams 82) uncovered more than 250,000 structure variations. A total of 52,051 protein coding genes and 36,429 transposable elements were annotated for this genome, and a gene co-expression network including 39,967 genes was also established. This high quality Chinese soybean genome and its sequence analysis will provide valuable information for soybean improvement in the future.


Assuntos
Variação Genética , Genoma de Planta/genética , Análise de Sequência de DNA/métodos , China , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Elementos de DNA Transponíveis/genética , Redes Reguladoras de Genes , Genes de Plantas/genética , Anotação de Sequência Molecular , Locos de Características Quantitativas/genética
12.
Plant Mol Biol ; 97(6): 489-506, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30006693

RESUMO

KEY MESSAGE: Coexpression network revealing genes with Co-variation Expression pattern (CE) and those with Top rank of Expression fold change (TE) played different roles in responding to new environment of Miscanthus lutarioriparius. Variation in gene expression level, the product of genetic and/or environmental perturbation, determines the robustness-to-plasticity spectrum of a phenotype in plants. Understanding how expression variation of plant population response to a new field is crucial to domesticate energy crops. Weighted Gene Coexpression Network Analysis (WGCNA) was used to explore the patterns of expression variation based on 72 Miscanthus lutarioriparius transcriptomes from two contrasting environments, one near the native habitat and the other in one harsh domesticating region. The 932 genes with Co-variation Expression pattern (CE) and other 932 genes with Top rank of Expression fold change (TE) were identified and the former were strongly associated with the water use efficiency (r ≥ 0.55, P ≤ 10-7). Functional enrichment of CE genes were related to three organelles, which well matched the annotation of twelve motifs identified from their conserved noncoding sequence; while TE genes were mostly related to biotic and/or abiotic stress. The expression robustness of CE genes with high genetic diversity kept relatively stable between environments while the harsh environment reduced the expression robustness of TE genes with low genetic diversity. The expression plasticity of CE genes was increased less than that of TE genes. These results suggested that expression variation of CE genes and TE genes could account for the robustness and plasticity of acclimation ability of Miscanthus, respectively. The patterns of expression variation revealed by transcriptomic network would shed new light on breeding and domestication of energy crops.


Assuntos
Andropogon/genética , Produtos Agrícolas/genética , Transcriptoma/genética , Biocombustíveis , Domesticação , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes/genética , Genes de Plantas/genética
13.
Mol Ecol ; 27(12): 2742-2753, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29717521

RESUMO

The evolutionary concurrence of intraspecies self-incompatibility (SI) and explosive angiosperm radiation in the Cretaceous have led to the hypothesis that SI was one of the predominant drivers of rapid speciation in angiosperms. Interspecies unilateral incompatibility (UI) usually occurs when pollen from a self-compatible (SC) species is rejected by the pistils of a SI species, while the reciprocal pollination is compatible (UC). Although this SI × SC type UI is most prevalent and viewed as a prezygotic isolation barrier to promote incipient speciation of angiosperms, comparative evidence to support such a role is lacking. We show that SI × SI type UI in SI species pairs is also common in the well-characterized accessions representing the four major lineages of the Arabidopsis genus and is developmentally regulated. This allowed us to reveal a strong correlation between UI strength and species divergence in these representative accessions. In addition, analyses of a SC accession and the pseudo-self-compatible (psc) spontaneous mutant of Arabidopsis lyrata indicate that UI shares, at least, common pollen rejection pathway with SI. Furthermore, genetic and genomic analyses of SI × SI type UI in A. lyrata × A. arenosa species pair showed that two major-effect quantitative trait loci are the stigma and pollen-side determinant of UI, respectively, which could be involved in heterospecies pollen discrimination. By revealing a close link between UI and SI pathway, particularly between UI and species divergence in these representative accessions, our findings establish a connection between SI and speciation. Thus, the pre-existence of SI system would have facilitated the evolution of UI and accordingly promote speciation.


Assuntos
Arabidopsis/genética , Evolução Biológica , Linhagem da Célula/genética , Cruzamentos Genéticos , Flores/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Pólen/genética , Polinização/genética , Locos de Características Quantitativas/genética
14.
Mol Ecol ; 26(21): 5911-5922, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28833782

RESUMO

The use of transcriptome data in the study of the population genetics of a species can capture faint signals of both genetic variation and expression variation and can provide a broad picture of a species' genomic response to environmental conditions. In this study, we characterized the genetic and expression diversity of Miscanthus lutarioriparius by comparing more than 16,225 transcripts obtained from 78 individuals, belonging to 10 populations distributed across the species' entire geographic range. We only observed a low level of nucleotide diversity (π = 0.000434) among the transcriptome data of these populations, which is consistent with highly conserved sequences of functional elements and protein-coding genes captured with this method. Tests of population divergence using the transcriptome data were consistent with previous microsatellite data but proved to be more sensitive, particularly if gene expression variation was considered as well. For example, the analysis of expression data showed that genes involved in photosynthetic processes and responses to temperature or reactive oxygen species stimuli were significantly enriched in certain populations. This differential gene expression was primarily observed among populations and not within populations. Interestingly, nucleotide diversity was significantly negatively correlated with expression diversity within populations, while this correlation was positive among populations. This suggests that genetic and expression variation play separate roles in adaptation and population persistence. Combining analyses of genetic and gene expression variation represents a promising approach for studying the population genetics of wild species and may uncover both adaptive and nonadaptive processes.


Assuntos
Variação Genética , Genética Populacional , Poaceae/genética , Transcriptoma , Produtos Agrícolas/genética , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único
15.
Plant Genome ; 10(2)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28724071

RESUMO

Adaptation is a characteristic that enhances the survival or reproduction of organisms; selection is the critical process leading to adaptive evolution. Therefore, detecting selection is important in studying evolutionary biology. Changes in allele frequency are fundamental to adaptive evolution. The allele frequency of entire genes at the genomic scale is more intensive and precise for analyzing selection effects, compared with simple sequence repeat and single nucleotide polymorphism (SNP) alleles from nuclear gene fragments. Here, we analyzed 29,094 SNPs derived from 80 individuals of 14 L. Liou ex S.L. Chen & Renvoize populations planted near their native habitat (Jiangxia, Hubei Province, JH) and a stressful environment (Qingyang, Gansu Province, QG) to detect selection during initial adaptation. The nucleotide diversity of over 60% of genes was decreased in QG compared with JH, suggesting that most genes were undergoing selection in the stressful environment. We explored a new approach based on haplotype data inferred from RNA-seq data to analyze the change in frequency between two sites and to detect selection signals. In total, 402 and 51 genes were found to be targets of positive and negative selection, respectively. Among these candidate genes, the enrichment of abiotic stress-response genes and photosynthesis-related genes might have been responsible for establishment in the stressful environment. This is the first study assessing the change in allele frequency at the genomic level during adaptation. The method in which allele frequency detects selection during initial adaptation using population RNA-seq data would be useful for developing evolutionary biology.


Assuntos
Haplótipos , Poaceae/genética , Seleção Genética , Transcriptoma , Frequência do Gene , Genes de Plantas , Variação Genética , Polimorfismo de Nucleotídeo Único
16.
Sci Rep ; 6: 25536, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27150248

RESUMO

Expression variation plays an important role in plant adaptation, but little is known about the factors impacting the expression variation when population adapts to changing environment. We used RNA-seq data from 80 individuals in 14 Miscanthus lutarioriparius populations, which were transplanted into a harsh environment from native habitat, to investigate the expression level, expression diversity and genetic diversity for genes expressed in both environments. The expression level of genes with lower expression level or without SNP tended to be more changeable in new environment, which suggested highly expressed genes experienced stronger purifying selection than those at lower level. Low proportion of genes with population effect confirmed the weak population structure and frequent gene flow in these populations. Meanwhile, the number of genes with environment effect was the most frequent compared with that with population effect. Our results showed that environment and genetic diversity were the main factors determining gene expression variation in population. This study could facilitate understanding the mechanisms of global gene expression variation when plant population adapts to changing environment.


Assuntos
Exposição Ambiental , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genética Populacional , Poaceae/genética , Poaceae/fisiologia , Adaptação Biológica , Variação Genética , Análise de Sequência de DNA , Análise de Sequência de RNA
17.
Front Plant Sci ; 7: 109, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904072

RESUMO

As a promising candidate for the second-generation C4 energy crop, Miscanthus lutarioriparius has well acclimated to the water-limited and high-light Loess Plateau in China by improving photosynthesis rate and water use efficiency (WUE) compared to its native habitat along Yangtze River. Photosynthetic genes were demonstrated as one major category of the candidate genes underlying the physiological superiority. To further study how photosynthetic genes interact to improve the acclimation potential of M. lutarioriparius, population expression patterns within photosynthesis pathway were explored between one mild environment and one harsh environment. We found that 108 transcripts in assembled transcriptome of M. lutarioriparius were highly similar to genes in three Kyoto Encyclopedia of Genes and Genomes (KEGG) photosynthesis pathways of sorghum and maize. Phylogenetic analyses using sorghum, maize, rice, and Arabidopsis genes of dark reaction identified 23 orthologs and 30 paralogs of M. lutarioriparius photosynthetic genes. These genes were also clustered into two kinds of expression pattern. 87% of transcripts in dark reaction were up-regulated and all 14 chloroplast-encoded transcripts in light reaction increased degradation in the harsh environment compared to the mild environment. Moreover, 80.8% of photosynthetic transcripts were coordinated at transcription level under the two environments. Interestingly, LHCI and PSI were significantly correlated with F-ATPase and C4 cycle. Overall, this study indicates the coordinated expression between cyclic electron transport (consisting of LHCI, PSI, and ATPase) and CO2-concentrating mechanism (C4 cycle) could account for photosynthesis plasticity on M. lutarioriparius acclimation potential.

18.
Genome Biol Evol ; 8(3): 635-48, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26868598

RESUMO

Gene loss is the driving force for changes in genome and morphology; however, this particular evolutionary event has been poorly investigated in leguminous plants. Legumes (Fabaceae) have some lineage-specific and diagnostic characteristics that are distinct from other angiosperms. To understand the potential role of gene loss in the evolution of legumes, we compared six genome-sequenced legume species of Papilionoideae, the largest representative clade of Fabaceae, such as Glycine max, with 34 nonlegume plant species, such as Arabidopsis thaliana. The results showed that the putative orthologs of the 34 Arabidopsis genes belonging to 29 gene families were absent in these legume species but these were conserved in the sequenced nonlegume angiosperm lineages. Further evolutionary analyses indicated that the orthologs of these genes were almost completely lost in the Papillionoideae ancestors, thus designated as the legume lost genes (LLGs), and these underwent purifying selection in nonlegume plants. Most LLGs were functionally unknown. In Arabidopsis, two LLGs were well-known genes that played a role in plant immunity such as HARMLESS TO OZONE LAYER 1 and HOPZ-ACTIVATED RESISTANCE 1, and 16 additional LLGs were predicted to participate in plant-pathogen interactions in in silico expression and protein-protein interaction network analyses. Most of these LLGs' orthologs in various plants were also found to be associated with biotic stress response, indicating the conserved role of these genes in plant defense. The evolutionary implication of LLGs during the development of the ability of symbiotic nitrogen fixation involving plant and bacterial interactions, which is a well-known characteristic of most legumes, is also discussed. Our work sheds light on the evolutionary implication of gene loss events in Papilionoideae evolution, as well as provides new insights into crop design to improve nitrogen fixation capacity.


Assuntos
Evolução Molecular , Fabaceae/genética , Filogenia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Mapeamento Cromossômico , Genoma de Planta
19.
J Exp Bot ; 66(20): 6415-29, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26175351

RESUMO

Understanding the genetic basis of water use efficiency (WUE) and its roles in plant adaptation to a drought environment is essential for the production of second-generation energy crops in water-deficit marginal land. In this study, RNA-Seq and WUE measurements were performed for 78 individuals of Miscanthus lutarioriparius grown in two common gardens, one located in warm and wet Central China near the native habitats of the species and the other located in the semiarid Loess Plateau, the domestication site of the energy crop. The field measurements showed that WUE of M. lutarioriparius in the semiarid location was significantly higher than that in the wet location. A matrix correlation analysis was conducted between gene expression levels and WUE to identify candidate genes involved in the improvement of WUE from the native to the domestication site. A total of 48 candidate genes were identified and assigned to functional categories, including photosynthesis, stomatal regulation, protein metabolism, and abiotic stress responses. Of these genes, nearly 73% were up-regulated in the semiarid site. It was also found that the relatively high expression variation of the WUE-related genes was affected to a larger extent by environment than by genetic variation. The study demonstrates that transcriptome-wide correlation between physiological phenotypes and expression levels offers an effective means for identifying candidate genes involved in the adaptation to environmental changes.


Assuntos
Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Poaceae/genética , Água/metabolismo , China , Produtos Agrícolas/metabolismo , Secas , Ecossistema , Variação Genética , Proteínas de Plantas/metabolismo , Poaceae/metabolismo , Análise de Sequência de RNA
20.
Anticancer Agents Med Chem ; 15(4): 423-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25929575

RESUMO

The ABC (ATP-binding cassette) transporter is one of the largest and most ancient protein families with members functioning from protozoa to human. The resistance of cancer and tumor cells to anticancer drugs is due to the over-expression of some ABC transporters, which may finally lead to chemotherapy failure. The mouse ABC transporters are classified into seven subfamilies by phylogenetic analysis. The mouse ABC transporter gene, alias, chromosomal location and function have been determined. Within the ABC super-family, the MDR transporters (Abcb1, Abcc1, Abcg2) in mouse models have been proved to be valuable to investigate the biochemistry and physiological functions. This review concentrates on the multidrug resistance of mouse ABC transporters in cancer and tumor cells.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Neoplasias/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Antineoplásicos/uso terapêutico , Humanos , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...